
۸.	² 号:	1.1 -
~	_ •	//上·と・
J	- · J •	姓名:

第二章 电磁波与地物波谱特征

— ,	电磁波与电磁波谱
	电磁波: 由振源发出的电磁振动在空间的传播。
	电磁波的特性:真空中以光速传播,兼具波动性与粒子性。
传	番无需介质,与物质作用时发生。
	电磁波谱:
2.	电磁波谱的划分 (波长由短到长): γ射线 → X 射线 → → → 微波 →
无约	线电波
	遥感常用波段:
٠.	- 可见光 (μm): 地物识别主要波段。
	- 红外 (µm): 近红外 (光红外)、热红外 (中/远红外)。
	- 微波 (m): 穿透云雾,全天候观测,有主动与被动之分,具有穿透能力。
4.	电磁辐射度量:任何物体都是辐射源,不仅能够吸收其它物体对它的辐射,也能够向外辐射。电磁波
	传递其实就是电磁能量的传递。因此,遥感探测实际上是辐射能量的测定。
	- 辐射能量 (W): 电磁辐射的能量, W ,单位是 J
	- 辐射通量 ($\boldsymbol{\varphi}$): 单位时间内通过某一面积的辐射能量, $\boldsymbol{\varphi} = dW/dt$,单位 W
	- 辐射通量密度 (E): 单位时间内通过单位面积的辐射能量, $E = d\Phi/dS$,单位 W/m^2
	- 辐照度 (I): 被辐射的物体表面单位面积上的辐射通量, $I = d\Phi/dS$,单位 W/m^2
	- 辐射出射度 (M): 向外发出辐射的辐射源物体表面的辐射通量密度, $M = d\Phi/dS$,单位 W/m^2
	- 辐射亮度(L): 在特定方向,垂直此方向的单位面积单位立体角内辐射出的辐射通量,单位 W/m^2 ·sr
二、	黑体辐射
5.	黑体: 在任何温度下,对各种波长的电磁辐射的吸收系数等于1(100%)的物体。
	- 如果,则这个
	物体是绝对黑体,简称黑体。(吸收率恒等于1,反射率恒等于0。)
	- 黑体的吸收系数 $\alpha(\lambda, T)=1$,反射系数为 0 ,与物体的温度以及电磁波的波长无关。
	黑体辐射:。
6.	黑体辐射定律
	- 普朗克热辐射定律: 黑体的辐射出射度 M 与温度的关系,以及按波长分布的规律
	- 黑体辐射的三个特征
	(1),每条曲线只有一个最大值。
	(2) 温度越高,
	(3) 随着温度的升高,辐射最大值所对应的波长方向移动。
	- 玻尔兹曼定律: 绝对黑体的总辐射出射度与黑体温度的四次方成正比。
	- 维恩位移定律: 黑体辐射光谱中最强辐射的波长 λmax 与温度 T 成反比。
	- 基尔霍夫定律
三、	辐射源
7	十四年射(十四平強)的主再特尔

7. 太阳辐射(太阳光谱)的主要特征:

		学号 :	姓名:			
8.	自然辐射源: 地球是远红外遥感的主要辐射					
	人工辐射源: 主动式遥感的辐射源, 雷达探	测:分为微波雷达和激光電	診。			
9.	大气对太阳辐射的影响:太阳辐射的衰减过	程,太阳辐射经过大气层时	寸,受大气分子、气溶胶、水流			
	等的影响,主要发生四种作用:	,这四种化	F用会导致电磁波的衰减。			
	- 大气的散射作用: 太阳辐射在传播过程					
	是太阳辐射衰减的	主要原因。				
	1)瑞利散射: 当微粒的直径比辐射波	x 长小得多时,此时的散射和	尔为瑞利散射。d λ			
	2)米氏散射: 当微粒的直径与辐射波					
	3) 非选择性散射: 当微粒的直径比辐	自射波长大得多时所发生的	 敦射。 <i>d</i> λ			
	- 大气反射					
	- 大气的吸收作用					
10.	大气窗口:		0			
	 、地物的光谱特征					
11.	地物的光谱特征: 自然界中任何地物都有自	身的电磁辐射规律, 如反射	, 对、发射、吸收电磁波的特性。			
	少数还有透射电磁波的特性。					
12.	地物的反射光谱特性: 地物对某一波段的反	射能量与入射能量之比。				
	地物反射光谱:		0			
	地物反射光谱曲线:		0			
	地物电磁波光谱特征的差异是遥感识别地物	性质的基本原理。传感器技				
	较地物光谱数据而确定的。					
	不同地物由于和和	具有不同的反射光谱	等特性 。			
13.	植被的反射波谱特征:					
	- 植被在可见光的 0.55μm,					
	- 在可见光的 0.45μm (蓝光) 以及 0.65μ	 um(红光)处有				
	- 从近红外开始,					
	- 在 1.45μm、 1.95μm 以及 2.6~2.7μm	处,				
14.	土壤的反射波谱特征: 影响土壤反射率的内在、外在因素有很多,包括水分含量、土壤结构(砂、粉					
	砂、黏土的比例)、有机质含量、氧化铁的石	存在以及表面粗糙度等。				
	- 土壤水分含量与	密切相关。				
	也是影响土壤光谱特	性的一个重要参数。				
15.	水体的反射波谱特征:					
16.	岩石的反射波谱特征					
17.	地物的光谱特性具有特性和	特性。				
18.	影响地物反射率变化的主要因素:					
	(1) (2					
		.)				
	(5)					
19.	地物的发射光谱特性					
	发射光谱:					
	发射光谱曲线:					
20	地物的透射光谱特性 地物的透射光谱特性					

Page 2-2

学号: 姓名:	
---------	--

* 课后作业

- 1. 无云的晴天,天空为什么呈现蓝色?朝霞和夕阳为什么都偏橘红色?
- 2. 云雾为什么通常呈现白色? 微波为什么具有穿云雾能力?
- 3. 我们看到的植物为什么呈现绿色?
- 4. 分别论述植被、水体和土壤的光谱学特征。
- 5. 遥感按照电磁波波段如何分类,说明每类遥感的实际用途。